Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics
نویسندگان
چکیده
The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies.
منابع مشابه
CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.
Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is crit...
متن کاملEvaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis.
Clostridium perfringens type A food poisoning is the second most commonly identified bacterial food-borne illness. Sporulation contributes to this disease in two ways: (i) most food-poisoning strains form exceptionally resistant spores to facilitate their survival of food-associated stresses, and (ii) the enterotoxin (CPE) responsible for the symptoms of this food poisoning is synthesized only ...
متن کاملCharacterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid.
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the ...
متن کاملRole of GerKB in germination and outgrowth of Clostridium perfringens spores.
Previous work indicated that Clostridium perfringens gerKA gerKC spores germinate significantly, suggesting that gerKB also has a role in C. perfringens spore germination. We now find that (i) gerKB was expressed only during sporulation, likely in the forespore; (ii) gerKB spores germinated like wild-type spores with nonnutrient germinants and with high concentrations of nutrients but more slow...
متن کاملGerO, a putative Na+/H+-K+ antiporter, is essential for normal germination of spores of the pathogenic bacterium Clostridium perfringens.
The genome of the pathogen Clostridium perfringens encodes two proteins, GerO and GerQ, homologous to monovalent cation transporters suggested to have roles in the germination of spores of some Bacillus species. GerO and GerQ were able to transport monovalent cations (K(+) and/or Na(+)) in Escherichia coli, and gerO and gerQ were expressed only in the mother cell compartment during C. perfringe...
متن کامل